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Hopfield model with self-coupling
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We have studied analytically the retrieval performance of a Hopfield model in the presence of self-coupling
in the synaptic matrix. We find, contrary to expectations from some earlier studies based on the counting of
fixed points, that negative self-coupling causes deterioration in the retrieval performance of the network. On
the other hand, it is possible to enhance the retrieval performance by having a positive self-coupling of
appropriate magnitude.
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[. INTRODUCTION Hence, the fractional volume of basins of spurious patterns
goes to zero, while that of stored patterns remains finite. As
Neural network models of associative memory have reexplained below, the self-interaction term can also be con-
ceived a great deal of attention in recent yddr&]. Conse- sidered as a nonzero threshold for the postsynaptic potential
quently, various learning rules have been designed for stof neurons in the network. In the context of optimal neural
ing and recalling patterns. These learning rules are used teoetworks, it is possible to select states with sizable basins of
obtain the off-diagonal elements of the synaptic matrix cor-attraction by having a suitable threshold for the postsynaptic
responding to the interaction strength between two differenpotential[8,9]. Treeves and Amif10] have considered the
model neurons. The diagonal elements of the synaptic matrigffect of the positive threshol@equivalently the negative
which represent the self-interaction strength of the modeself-coupling on the number of fixed points of an asym-
neurons are generally considered to be a nuis2& and  metrically diluted Hopfield model in the limiting cases of
are set equal to zero. However, there are reasons to study thiery low and very high levels of memory loading. The gen-
neural network models with nonzero self-interaction termseral conclusion is that such a threshold causes an exponential
First, nonzero self-interaction terms do appear when oneeduction in the number of fixed points of the network.
considers the models of nonlinear holographic associative In this paper, we present results of analytical studies of a
memorieg 4]. Modeling of the firing mechanism of neurons Hopfield model in the presence of a self-interaction term. It
may also require introduction of the self-interaction in theis well known [1] that it is not possible to define the
dynamics of the neural networlsee Ref[5] for a detailed Lyapunov or energy function for such a system. As a result,
discussion of this aspectSecond, in contrast to the general one cannot use in the present case the methods of equilib-
belief, the presence of the self-interaction term in the synaprium statistical mechanics, which have been extensively used
tic matrix may even improve the performance of the networkto analyze the Hopfield model. We concentrate, therefore, on
as an associative memory. Krawthal. [6] have shown that the dynamics of the model, which is governed by the local
a well-chosen value of the diagonal coupling can increasalignment field. First, we look at the structure of the locally
basins of attraction of stored patterns in the perceptron-likestable fixed point$i.e., states that are stable to all single spin
neural-network model. They have also discussed the positivitips) of the model. The counting of fixed points in the
role of the self-coupling for the retrieval properties of Hopfield model produces the following pictufd@l]. The
Hopfield-type models. They have demonstrated, by numerifixed points, which are exponentially largel\y appear only
cal simulations on a fully connected Hopfield net with in two distinct regions of phase space: in a narrow ‘re-
pseudoinverse learning, the possibility of enhancing the batrieval” band where the fixed points are strongly correlated
sin of attraction substantially. Fontanari and't€dle [7]  with a memory state, and in a wide “spurious” band which
have carried out a detailed equilibrium analysis of the Littleis centered around states having no macroscopic overlap
model (the synchronous version of the Hopfield mgdel ~ with the chosen memory state. The two bands are disjoint
the presence of the self-coupling when the number of patfrom each other only below a certain critical value @f
ternsp grows asp= aN, whereN is the number of neurons. =0.113. It should be noted that the retrieval band is not
It is shown that the self-coupling can be used to control theexactly centered around the memory state. It happens as
occurrences of cycles, thereby improving the performance cdome of the neurons undergo spin-glass—type freezing in
the model as an associative memory. It is also shown that thendom individual states under the influence of conflicting
synchronous dynamics is much more stable to noise than threynaptic inputg1].
asynchronous one for the same memory loading leygro- When the self-coupling is increased from zero to a posi-
vided that neurons have a sufficiently large self-couplingtive value, it results in the exponential growth of fixed points
Athithan and Dasguptd5] have performed Monte Carlo both in the retrieval and the spurious bands. These bands
simulations for a Hopfield model with a negative self- become wider withd and finally merge together. For moder-
coupling. They have shown that the self-coupling of an ap-ate values ofl, the retrieval band grows faster than the spu-
propriate magnitude causes suppression of the spurioutus band. It gives rise to the possibility of having an opti-
fixed-point attractors in the Hopfield model far<0.05. mal value of the self-coupling where the positive effects due
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to the growth of the retrieval band may take over the negaself-coupling—the convergence time increases, the basin of
tive effects due to the growth the spurious band so far as thattraction decreases. One may expect enhancement in the
retrieval performance of the network is concerned. On thestorage capacity due to the presence of a negative self-
other hand, the presence of negative self-coupling results igoupling by looking at the structure of fixed points. How-
making the two bands narrower by destabilizing exponengVver, this does not happen. Once again, contrary to the gen-
tially many fixed points present in these bands. As a result€ral expectation, we find that it is possible to enhance
the two bands move farther apart in phase space. As is thiPMmewnhat the storage capacity of the network by having a
case with the positive self-coupling, fixed points in the re-Positive self-coupling. The positive self-coupling is also ben-
trieval band are much more sensitive to the self-couplinggficial in different regions of the T—«) phase diagram
than those in the spurious band. The retrieval band gets corhl-14. We observe faster retrieval and enhancement in the
pletely suppressed by a negative self-coupling of a ver)bfis'” of attraction in .the _mlxed phasg, too. Moreoyer, re-
small magnitude compared to what is required to completeljfieval becomes possible in some regions of the spin-glass
suppress the spurious band. This is not in agreement with tHehase. o _ _ _

numerical simulation results of Ref5], namely that it is The remaining part of this paper is organized as follows.
possible to suppress completely the spurious fixed points fopection Il contains a description of the model we cpn5|der_. In
«<0.05. Further, the magnitude of the self-coupling whichSec. lll, we present the res.ults on the structure of f|>§ed points
is required to suppress the retrieval band has a strong depefi the deterministic dynamics. We study the dynamics of the
dence ona. The higher the value of, the smaller is the model on finite tlme' scales in Sep. IV. Section V contains a
magnitude of the self-coupling required to completely sup-Summary of the main results of this study and a few conclud-
press the retrieval band. Once again we are faced with B9 remarks.

situation in which the positive effects due to suppression of

the spurious band are accompanied by the negative effects Il. MODEL

that may arise due to suppression of the retrieval band. Natu- ) o )

rally, the question arises whether there exists an optimal The network under investigation consists Mftwo-state
value of the negative self-coupling for the retrieval perfor-model neurong“spins”) oy, each of which may assume the
mance of the network. The question seems more relevant fofalues+1 or —1. A configuration or state of the network is
smaller values ofxr, where the retrieval band survives for defined by giving specific values to all of it$ spins. The

comparatively higher magnitude of the negative self-off-diagonal elements of the synaptic interconnection matrix
coupling. are given by the modified Hebb rule,

At this point, it should be mentioned that the complete
suppression of the retrieval band does netessarilystop 12 wen i
the function of the network as an associative menjarg0]. Ji=N ;,,2:1 ¢, 171, @
A fixed point in the retrieval band is initially destabilized as
the spin-glass freezing of the randomly aligned neurons 1%/ here the{é¥}, p=1,.

destroyed by a negative self-coupling of rather small magni- : u - p are the stored patterns or
tude, thereby causing a hopping around. This would, how!ME€MONES. Each}’ may take the values 1. with equal prop-
bility. The number of patterns stored in the networkpjs

ever, not affect the overlap with the stored pattern, which . .

will remain fixed and large, as it is determined by the rest o2"d @=P/N is the memory-loading level of the network.

the neurons. As long ag is small, the distinction between a Iqstead of tak!ng _the d|agon§I elements. of the synaptic ma-

fixed point and a trajectory spanning a small phase spac‘i;["x Jii =0, which is the case in the Hopfield modéb], we

corresponding to neurons with weak local fields is not veryt""ke them to be

significant from an operational point of view. The network

would work effectively provided that the dynamics draws the

network to the neighborhood of a memory, even if a small

fraction of neurons keep changing their states. If the timeThe noise-freézero temperatupedynamics of the network is

averaged overlap is high enough, the memory would bdiven by the sequential update,

properly recalled. From this point of view, it seems natural to

study the time evolution of the overlap. oi(t+6t)=sgrih;(t)], 3
The foregoing discussion brings out the need for a dy-

namical theory. To this end, we generalize a dynamicalvhere the local field at the spim; is given by

theory due to Coolen and Sherringtph2,13, which has

been used to study the dynamics of the Hopfield model with

an extensive number of stored patterns on finite time scales. hi(t) =2 Jjo;(1). (4)

We find that the time taken by the network to converge to the )

desired memory state reduces in the presence of a positive . . .

self-coupling. It is also possible to enhance the basins ol order to compare thls_dynamlcs W'_th that of the standard

attraction of stored patterns by having a positive self-1OPfield model, we rewrite the local field(t) as

coupling of appropriate magnitude. The retrieval perfor- 0

mance is found to deteriorate in the presence of a negative hi(t) =h;(t) +dai(1), ®

Ji=d, Vi. 2
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Whereh?(t)zEj;tiJijaj(t) is the local field at théth spin in ) 1
the Hopfield model. It is possible to express the update rule Ri=29-1+5 ; Z §téfoio+d (12)
for theith spin as 7Ty

0 otherwise. Using the integral representation for th&unc-
oi(t+6t)=sgrihi(t) +dai(t)]. ®  tions in Eqg.(10) and averaging over the patterfsee Ref.

) N o . [16] for technical details of such a calculationsve get in
Thus, a negativeépositive) self-coupling in the synaptic ma- the thermodynamic limit

trix has the effect of introducing a positiveegative thresh-

old in the dynamics of the Hopfield model. It is clear from (N¢p(N,a,d,g))~eNFled.a), (13
Eq. (6) that if |d|>|(ho)|, the initial state will not flow to the o _ _

desired memory and the network will not act as an associd=(a.d,9) is given in the terms of the saddle-point param-
tive memory. Therefore, it is important to ensure by choos£tersa andb as

ing carefully the magnitude of that the dynamics of the 1 (1-b)?
network is not dominated by the self-coupling. It can be seen g4 d,g)=a|b— = +

below that the average value lof at any time is given by the 2
overlap with the desired memory. Hence the magnitude of

the self-coupling should be much smaller than the starting
overlap with the memory state to be retrieved. We will nowyhere
discuss the effect of the self-coupling on the structure of

1
oa + Elna +(1—g)In ¢(1)

tginé(u)—ging—(1-g)in(1-g), (14

fixed points. 20— 1+ab-d
t= ?, (15)
a
IIl. STRUCTURE OF FIXED POINTS “
Fixed points are the states that remain unchanged under U= 1-2g+ab—d (16
the S|ngJe spin-flip dynamics given by E@). Accordingly, Jaa '
a statee=(o04, ...,0y) is a fixed point if it satisfies the
following condition: and
O'i:Sgr[hi], i=1, ...N. (7) 1 fm 2
X)=—| dyexp —y/2). 17
#(x) T2 )x yexp(—y/2)

This can also be expressed as

] The saddle-point parametessand b satisfy the following
hi0'i>0, i=1,...N. (8) equations:
We follow closely the approach of Gardndrl] to calculate (1—b)?
the average number of fixed-point attract(is (N, «,d,g)) a B(1) +gu B(U)
at a Hamming distanchlg from a stored pattern. We con-
sider a stater which is at a Hamming distandeég from the a¢'(t) a ¢’ (u)
gy : . 1- +(1-g)\/ = +g\/ = =0.
vth stored patterg”. According to Eq.(8), the state will be a ¢(t) a ¢(u)
a fixed point if the quantity (29

¢'(1) ¢'(u)

—1]+(1—g)t =0, (19

(1-b)
a

a

We have solved Eq$18) and(19) numerically fora and
R'=0;> J;jo;>0, i=1,... N, (9) b for different values ofx andd to get corresponding(g).

! In Fig. 1, we have plotted(g) for «=0.05. We note here
that according to Eq.13), fixed points exist only in regions
%t the phase space whefg(g)=0 asN—ow. As is well
known, ford=0 we have fixed points in two distinct regions

" of phase space—in a narrow “retrieval” band where the
<pr(N,a,d,g)>:f H dMTf{U.}< H S(N—R) ). fixed points are strongly correlated with the chosen memory
0 i T\ state §~0), and in a wide “spurious” band which is cen-
(100 tered around states having no macroscopic overlap with the
memory state =0.5). These two bands are well separated
from each other. Fod=0.02, we have the same structure of
fixed points. However, additional fixed points have appeared
in both bands, making both of them broader. The retrieval

so that the average number of fixed points at a Hammin
distanceNg from the vth stored pattern is given by

Separation of the term coming from thsh pattern and the
interference term coming from other patterns gives

R'=1-2g+ i 2 2 §f‘§f‘0i0j+d (11) band grows faster than thg spurioug band. For instance, at
N Z = d=0.02, the peak value d% in the retrieval band is three to
four orders of magnitude larger than thatdgt 0. On the
for N(1—g) values ofi for which &'=a;, and other hand, the peak value &fin the spurious band at
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17 T T T T T =-—0.09. It is worth noticing here that the magnitude of the
f self-coupling|d.,| which is required to suppress the retrieval
i band has a strong dependence on the memory-loading level
1000 - «. There is almost an order of magnitude variationdg| as

we go froma=0.05 toa=0.113. The origin of the higher
sensitivity of the retrieval states at higher valuesidifes in

the fraction of spins which is not aligned to the chosen
memory state. The higher the value @f the higher is the
probability of finding a spin with lower stability. However,
there is little variation in the magnitude of the self-coupling
|d.{ needed to destabilize the spurious band as we go from
a=0.5tow=0.113.

It is intriguing to investigate the effect of growth or sup-
pression of fixed points on the retrieval properties of the
network. In particular, it is interesting to study the behavior
of the basin of attraction of stored patterns and the conver-

FIG. 1. F(g) for various values of the self-coupling. « gence time(time taken by an initial stgte to reach the desired
—0.05. Full curve,d=0: dotted curved=0.02, dashed curve statg. This would be possible only in the framework of a
=—0.02: full curve at the bottorg= — 0.06. dynamical theory, which will be discussed in the next

section.

=0.02 is only 1.3 times larger than that@t 0. When the IV. DYNAMICS
self-coupling strength is reduced to a negative valise

—0.02, the retrieval band has become completely sup-
pressed. The spurious band has still exponentially man
fixed points in spite of a small fraction of fixed points be-

To study the dynamics of the model, we generalize a dy-
amical theory due to Coolen and Sherringf@2,13. The
heory approximates reasonably well the dynamics of the
: o : —fully connected Hopfield model near saturation on finite time
coming destabilized. When the strength of the self COuIOIIngscales. Here, we consider the stochastic dynamics of the net-

term is further reduced td=—0.06, both of these bands work to account for the fast synaptic noise, which introduces

become completely suppressed. The higher sensitivity of the R : )
fixed points in the retrieval band is due to the fraction Of_undetermlnlsm in the dynamics, e.g., given by Eg). One

spin, i i 1t algned o the chosen memory st anf, % ST 12 Sy ul yerages or snsenbies of
hence has very low stability. ) yp

In Fig. 2, we present the results far=0.113 where in the kov chain descriptiori1], where at each time step a ran-

standard Hopfield modeld0) we have the two bands domly drawn spin is updatdénd where the duration of each

nearly overlapping each other. As the self-coupling streng'[rlljpdateé\t is taken as M so that onO(N") time scales all

d is reduced tod= —0.002, both of these bands become >P"® have been updated once on avefageh as
narrower and more separated from each other. The retrieval

band becomes completely suppressed=at- 0.003 whereas N
the spurious band becomes completely suppressed at pH&((;): pt((;)'*‘ &2 [pt(Fk(;)Wk(Fkt;)
k=1
1 T T T - -
= pr(o)wi(a)]. (20)
Here,pt(c?) is the probability of finding the system at tine
in statea=(04, ...,on). Fy is a single spin-flip operator,
F@()=D(oq, ...,— 0k ... 0N, (22)

and the transition rates, (o) have the usual form,

.1 -
T ' ' Wk(U)EE[l_UktanKﬁhk(ff))]- (22

FIG. 2. Same as Fig. 1a=0.113. Full curve,d=0; dotted  The paramete (=T !, the inverse of temperatureon-
curve,d= —0.002; dashed curve,= —0.003; full curve at the bot- trols the degree of stochasticity. F@=0, the dynamics is
tom,d=—0.09. completely random whereas f@=c we recover the deter-

051912-4



HOPFIELD MODEL WITH SELF-COUPLING PHYSICAL REVIEW B4 051912

ministic update rule of Eq.3). ForN—o, 5t—0 and hence Local fields can now be expressed as
Eq. (20) results in the master equation:
R - - 1

d . N ) ) . ) hi(0')=§i1[m(0')+zi(0')]—ﬁcri, (25)

GiPi(0)= 2 [PUFio)Wi(Fi@) =P @)W )].
(23) . P X
. z(o)=¢ 2 &Y 2 ontdélo. (29
We assume that the correlations, (o) =(1/N)Z &l oy K’ .
between system state and stored patterns are of order unifyjs ysefyl to define a distribution which gives the probabil-

for u=1. The remainingp—1 correlations are assumed 10 i gensity in terms of the macroscopic order parameters
be of order 1{N (the condensed ansatZheir cumulative (m,r):

impact on the system’s dynamics is given by the order pa-

rameter (o), P(MN= p(e)dm—m(a)3r—1(a)). (27)

2

N p
- 1 1 1
= — 1 = — — “
m(c) N kzl G (o) a ,;1 {N IZl feow] - Using Eq.(23), we can write the time derivative of the mac-

(29 roscopic distribution in the thermodynamic limit as

%Pt(m,r)=aim[Pt(m,r)[m—f dzDp, [ Z]tanH Sm+ Bz] ]+2§[Pt(m,r)[r—l—§J dzDy, ;[ Z]ztanH Bm+ Bz]

1
+NPt(m,r)O

+gf dzD}, [ z]tanH Bm+ Bz] 1,f dsz,r;t[z]z,J dsz,,;t[z]zz,d,dz}, (28)

where the intrinsic noise distributiori®,, ,.[z] andD, [ z] are given by
2 pu(@)8(Mm=m(3)a(r =r(o)(1N) X 8z=2(0)

Dm,r;t[z]E ) (29
; pi(&) 8(m—m())8(r —r(5))

> pt<&>5<m—m(<?>>5<r—r<6>><1/N)2i 0iél 8(z—7(5))
Dr,n,r;t[Z]E . (30
> p(3)8(m—m(3))8(r—r(5))

The condensed ansatz allows us to neglect the last term on 1 (¢ 1
the right-hand side of Eq28) as the variance oD ,,.[z] Sat’ = ;f dzDy, [ z]z tant fm+ Bz]
will remain finite for N—. Thus Eq.(28) takes the Liou-

ville form on finite time scales in the limiN—oe. It there- d ,
fore leads to deterministic evolution of the order parameter - ;f dzDy, [z]tant pm+ Bz]+1—r.
(m,r):

(33

P.(m,r)=8(m—m*(t))8(r —r*(t)), N—o, (31

where the deterministic trajectofyn* (t),r* (1)) is given by ~ Although Egs.(32) and(33) are exact within the condensed
the solution of the coupled flow equations: ansatz, the trouble with them is that they contain the distri-

butions given by Eqgs(29) and (30), which depend on the
microscopic distributiorpt(c;), which in turn depends on the

d
ﬁm:f d2Dn il 2]tant pm-+ pz]—m, ©2 nitial microscopic distributiorp,( o). In order to close these
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equations, Coolen and Sheringt?] made two important scopic (m,r) subshells of the statistical ensemble. The first
assumptions(i) the flow equations, and therefore the distri- assumption has been supported by the numerical simulations
butions (29) and (30), are self-averaging in the thermody- [13]. As a result, the explicit time dependence and the de-
namic limit with respect to the microscopic realization of the pendence on microscopic initial conditions in the flow equa-
stored patterns, an@) in calculating these distributions one tions (32) and(33) are removed and the intrinsic noise dis-
can assume equipartitioning of probability within the macro-tributions now become

> 5(m—m(&))5(r—r(&))(l/N)Ei 8(z—z(5))

Dm,r;t[z:l_’Dm,r[Z]E

> 8(m—m(3))é(r —r(a))

: (34)

@

> S(m—m()8¢ —r(F)IN) Y o1& 6z—z(5))

mr t[z]g’D’mr[Z]_

Eé(m m(a

The distributionsD,, [ z] andD, [ z] are calculated by the

replica methodsee Ref[13] for deta|ls) In the replica sym-
metric (RS) approximation, the results are

e~ (A+d+2)22ar

DRS[z]= ———
m'r[ ! 2\ 2mar
X311 fD t N A
ytannay Va_pr
(arde ))\2 . +e—(A+d—z)2/2ar
Z_ —_—
apr H 2\2mar
X431 jD t N -
ytannaAy Va_pr
A2
+(A+d—Z)a—pr—,LLj| , (36)
e—(A+d+z)2/2ar
Dr,nl,?rs[z:l:_

2\2mar

[ A
X[l—J' Dytan}‘{)\y a_pr

2

fid A e—(A+d—z)2/2ar
+(A+d+z)—+ e
( )apr M

+

2\2mar

[ A
X[l—f Dytan}‘{)\y a_pl’

)\2
+(A+d—Z)a—pr—,u

(37

(39
7))(r—r1(0))

whereDy is the Gaussian measurayz(dy/\/ZTr)e*yz’z,
A=apr—\?/p, and the parametefs|,\,p, .} are solutions
of the following saddle-point equations:

1-p(1—q)?

_1-p(1-q) . 39
[1-p(1-0)]

o PYed @9
1-p(1-0q)

=f Dy tanhAy+ w), (40

q=f Dy tanFf(Ay+ ). (41)

Stability of the replica symmetric solution requires

Dy

—p?(a+A 2[—20 42

aplatd) cos(\y+ u) “2

We numerically solve Eq€32) and(33) for various val-
ues of the memory loading level, the self-couplingd, the
temperaturgd*, and the initial conditionsn, for the over-
lapm. We fix the initial condition for the order parameteat
ro=1 for all the calculations. In Fig. 3, we plot the trajectory
m(t) for my=0.22, «=0.05, and various values of the self-
coupling d. It can be seen that retrieval is possible fbr
=0 with final overlapm;~1. The RS solution becomes un-
stable only after the retrieval has taken place, i.e., mear
~1 andr=1. Asdis increased to a moderate positive value,
the retrieval becomes faster. df is further increased, re-
trieval, as expected, becomes slower. Moreover, retrieval
quality deteriorates and the RS solution becomes unstable
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FIG. 3. Evolution of the overlap of the network stater with FIG. 4. Effect_ of tse!f-coqphng_on t_he bas_ln of attraction.
=0.1 andT=0. Time is in units of iterations/spin. Full and dotted

El, the pattern under retrieval, for various values of the Self‘curves same as Fi _ _ .

) - B o T X , g. 38 my=0.4, d=0.04. (b) m;=0.38, d
_couplmg d. q—0.05, T=0, and_ my=0.22. Time is in units of ~0.12. () Mp=0.37, d=0.15. (d) my=0.36, d=0.15. (&) m,
iterations/spin. Full curve, solutions of the flow E¢32) and (33 _ _ _ _

. . =0.36,d=0.2.(f) my=0.35,d=0.2.
are stable against replica symmetry breakiR@B); dotted curve,

the solutions are unstable against R$8.d=0. (b) d=0.04.(c) ) ]
d=0.25.(d) d=—0.02.(e) d=—0.04. (f) d=—0.08. [1,14]. The spurious attractors affect the dynamics of the

network differently in different regions of the phase diagram.
. . : We therefore solve the flow equations for finite temperatures
before the retrieval. Whed is negative, for|d|<0.02 re- to find out effect of the self-coupling in different regions of

trieval is possible withm;~1. The RS solution becomes e nhase diagram. First we look at the situation in which
unstable only after retrieval has been achieved. However, thg

comes very slow. Fad= —0.08, the retrieval is not possible.
Next, we look at the effect of the self-coupling on the
basin of attraction of a stored pattern. In the standard mode
(d=0), it is possible to retrieve the memory only when the
initial overlap with the stored pattermy=0.22 for «
=0.05. We find that it is possible to retrieve the memory
with slightly lower values of the initial overlapgy=0.21 by

attraction of the stored patterns. The initial overlap
hould not be less than 0.44 in order to retrieve the memory.
his should be compared wittny=0.22 in the zero-
temperature case. Once again we find faster retrieval and
enhancement in the basin of attraction of the stored memory

having a positive self-couplingl=0.04. Similarly for « 1.00[ ' ] 1of
=0.1 we observe improvement in the basin of attraction

(Fig. 4). The minimum initial overlapny=0.43 is needed in a

order to achieve the retrieval dt=0. We find that with a 0.95 0.9¢
positive self-coupling it can be accomplished with lower val- =~ 1 €
ues of them,, e.g., 0.35 atl=0.2. The enhancement in the & 08l

basin of attraction is much more prominent compared to that
in «=0.05. However, the retrieval quality becomes poor as .90} -
we go for the lower values of the initial overlap and higher 0.7}
values of the self-coupling. We find reduction in the basin of
attraction with the negative self-coupling.
Figure 5 shows the effect of self-coupling on the storage 0-85%: 10 20 %65 5 7
capacity of the network. We find enhancement of the storage t t
capacity by having a positive self-coupling. It is possible to  F|G. 5. Effect of self-coupling on the storage capacity of the
retrieve memory even fow=0.15 with d=0.15, which is  network.a=0.15 andT=0. Time is in units of iterations/spin. Full
not possible otherwise. and dotted curves, same as Fig. (@ my=0.9, d=0. (b) my
The Hopfield model has a richT(-«) phase diagram =0.6 and 0.7d=0.15.
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FIG. 7. Effect of self-coupling on the retrieval performance in
the spin-glass region of theT (- «) phase diagrama=0.09 and
T=0.4. Time is in units of iterations/spin. Full and dotted curves,
same as Fig. 3(@ my=0.9, d=0. (b) my=0.7, d=0.15.(c) m,
=0.6,d=0.25.

FIG. 6. Effect of self-coupling on the retrieval performance in
the mixed phase region of th& ¢ «) phase diagramx=0.05 and
T=0.5. Time is in units of iterations/spin. Full and dotted curves,
same as Fig. 3(a) my=0.4, d=0. (b) my=0.4, d=0.08. (c) my
=0.44,d=0 (lower curve, andd=0.12 (upper curve

, » o hind such an expectation is the robustness of retrieval fixed
in the presence of a positive self-coupliff§ig. 6. Next we  ints 1 the self-coupling. However, we did not find any
consider the case af=0.09 andT=0.4, which falls in the " gjrect correlation between the suppression of the large num-
spin-glass phaséFig. 7). In the standard model, it is ot per of spurious metastable attractors and the improvement in
possible to retrieve the memory in such a situation. Howevery,e herformance of the network as an associative memory. In
by havingd=0.15 it is possible to retrieve the memory evenact e find deterioration in the retrieval performance of the
in this case. network in the presence of a negative self-coupling—the ba-
sin of attraction of stored memory decreases and the retrieval
V. CONCLUSION time increases. On the other hand, a positive self-coupling of
appropriate magnitude has a positive effect on the retrieval
erformance of the network. We find some enhancement in
Fle basin of attraction of the stored memory and the storage
capacity of the network. The retrieval becomes faster. It also

thhe fixed points O.f tge zer(I)—Femperdature er}atmhics in ;h ecomes possible to retrieve memory even in some regions
phase space andi) by applying a dynamical theory o of the spin-glass phase, which is not possible otherwise.

Coolen and Sherrington, which has been used to study the To what extent is the structure of fixed points relevant in

gy“amics O.f the dHﬁpfieId mo;jfel ono f(i)nlite t(i)mle SCal.e‘:‘]'.Weunderstanding the behavior of the network in the presence of
ave investigated the range affrom 0.01 to 0.15, which is self-coupling? We can think of two possibilities. First, in the

the region of interest so far as the retrieval properties arg ; ; -
) : ase of negative self-coupling, the positive effects of sup-
concerned. We find that the spurious attractors are destabr_l)- d ping P P

lized b . If i hich d d Tl ression of the spurious fixed-point attractors do not com-
1z€d by & negatlv_e Sefl-coupling, which depends very mi ypensate for the negative effects that may arise due to sup-
on «. The magnitude of the self-coupling varies frguoh

. ) pression of the retrieval fixed-point attractors. Similarly, in
=0.06 in the case otr=0.05 to[d|=0.09 for that ina 4o case of moderate positive self-coupling, growth of the
=0.113. Contrary to ‘h'% the magnltu_de of the self-couplinggrigyal band compensates well for the negative effects due
which causes suppression of the retrieval states has a rat growth of the spurious band and leads to improvement in
strong dependence am. A negative self-coupling of Very e retrieval performance of the network. Second, it may be
sma_ll magnitude is enough to destabilize the retrieval Stateﬁossible that the effect of self-coupling is purely dynamic
at higher values ot, compared to those at lower values of 5 the improvement or deterioration in the retrieval perfor-
a. For example, the retrieval states far=0.113 become  ance cannot be attributed to the structure of fixed points.
suppressed afi=—0.003, whereas those far=0.05 be-  yngerstanding this would be quite interesting. Numerical
come suppressed at=—0.02, a value that is an order of gimylation results of Refl6] suggest that improvement in
magnitude higher. In both cases, however, the suppression gfe retrieval performance of the network may also depend on
retrieval states occurs much earlier than that of spurioughe choice of the learning rule for the off-diagonal elements

states. As discussed above, the suppression of the retrieV@{ the synaptic matrix. This issue will be addressed in our
states occurs because of the fraction of spins, which is nq{;tyre publication.

aligned to the stored pattern and hence has a very low value
of local alignment fields.

There have been speculatiord that the suppression of
spurious fixed-point attractors by a negative self-coupling of It is a pleasure to thank Professor A. C. C. Coolen for
appropriate magnitude will result in better performance ofhelpful discussions and Dr. S. C. Mehendale for a critical
the network as an associative memory. The main reason beeading of the manuscript.

To summarize, we have analyzed the performance of
Hopfield model as an associative memory in the presence
a self-coupling term in the synaptic matrix i counting

ACKNOWLEDGMENTS

051912-8



HOPFIELD MODEL WITH SELF-COUPLING PHYSICAL REVIEW B4 051912

[1] D. J. Amit, Modeling Brain FunctiongCambridge University ~ [9] E. Gardner and B. Derrida, J. Phys.2A, 271 (1988.
Press, Cambridge, 1989 [10] A. Treves and D.J. Amit, J. Phys. 21, 3155(1988.
[2] J. Hertz, A. Krogh, and R. G. Palmemtroduction to the [11] E.G. Gardner, J. Phys. A9, L1047 (1986.
Theory of Neural ComputatiofAddison-Wesley, Reading, [12] A.C.C. Coolen and D. Sherrington, Phys. Rev. L&tt, 3886

MA, 1991). (1993.
[3] I. Kanter and H. Sompolinsky, Phys. Rev.3%, 380(1987. [13] A.C.C. Coolen and D. Sherrington, Phys. Rev.48 1921
[4] Y. Owechko, IEEE J. Quantum Electrop5, 619(1989. (1994
[5] G. Athithan and C. Dasgupta, IEEE Trans. Neural Ne®y. [14] D.J. Amit, H. Gutfreund, and H. Sompolinsky, Ann. Phys.
1483(19979). (N.Y.) 173 30(1987.
[6] W. Krauth, M. Mezard, and J.-P. Nadal, Complex S2s387

[15] J.J. Hopfield, Proc. Natl. Acad. Sci. U.S.R9, 2554(1982.
[16] M.P. Singh, C. Zhang, and C. Dasgupta, Phys. Re52,55261
(1995.

(1988.
[7] J.F. Fontanari and R. Kerle, J. Phys(France 49, 13 (1988.
[8] W. Krauth and M. Mezard, J. Phys. 20, L745 (1987.

051912-9



