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Hopfield model with self-coupling
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We have studied analytically the retrieval performance of a Hopfield model in the presence of self-coupling
in the synaptic matrix. We find, contrary to expectations from some earlier studies based on the counting of
fixed points, that negative self-coupling causes deterioration in the retrieval performance of the network. On
the other hand, it is possible to enhance the retrieval performance by having a positive self-coupling of
appropriate magnitude.
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I. INTRODUCTION

Neural network models of associative memory have
ceived a great deal of attention in recent years@1,2#. Conse-
quently, various learning rules have been designed for s
ing and recalling patterns. These learning rules are use
obtain the off-diagonal elements of the synaptic matrix c
responding to the interaction strength between two differ
model neurons. The diagonal elements of the synaptic ma
which represent the self-interaction strength of the mo
neurons are generally considered to be a nuisance@2,3# and
are set equal to zero. However, there are reasons to stud
neural network models with nonzero self-interaction term
First, nonzero self-interaction terms do appear when
considers the models of nonlinear holographic associa
memories@4#. Modeling of the firing mechanism of neuron
may also require introduction of the self-interaction in t
dynamics of the neural network~see Ref.@5# for a detailed
discussion of this aspect!. Second, in contrast to the gener
belief, the presence of the self-interaction term in the syn
tic matrix may even improve the performance of the netw
as an associative memory. Krauthet al. @6# have shown that
a well-chosen value of the diagonal coupling can incre
basins of attraction of stored patterns in the perceptron-
neural-network model. They have also discussed the pos
role of the self-coupling for the retrieval properties
Hopfield-type models. They have demonstrated, by num
cal simulations on a fully connected Hopfield net wi
pseudoinverse learning, the possibility of enhancing the
sin of attraction substantially. Fontanari and Ko¨berle @7#
have carried out a detailed equilibrium analysis of the Lit
model ~the synchronous version of the Hopfield model! in
the presence of the self-coupling when the number of p
ternsp grows asp5aN, whereN is the number of neurons
It is shown that the self-coupling can be used to control
occurrences of cycles, thereby improving the performanc
the model as an associative memory. It is also shown tha
synchronous dynamics is much more stable to noise than
asynchronous one for the same memory loading levela, pro-
vided that neurons have a sufficiently large self-coupli
Athithan and Dasgupta@5# have performed Monte Carlo
simulations for a Hopfield model with a negative se
coupling. They have shown that the self-coupling of an
propriate magnitude causes suppression of the spur
fixed-point attractors in the Hopfield model fora<0.05.
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Hence, the fractional volume of basins of spurious patte
goes to zero, while that of stored patterns remains finite.
explained below, the self-interaction term can also be c
sidered as a nonzero threshold for the postsynaptic pote
of neurons in the network. In the context of optimal neu
networks, it is possible to select states with sizable basin
attraction by having a suitable threshold for the postsyna
potential @8,9#. Treeves and Amit@10# have considered the
effect of the positive threshold~equivalently the negative
self-coupling! on the number of fixed points of an asym
metrically diluted Hopfield model in the limiting cases o
very low and very high levels of memory loading. The ge
eral conclusion is that such a threshold causes an expone
reduction in the number of fixed points of the network.

In this paper, we present results of analytical studies o
Hopfield model in the presence of a self-interaction term
is well known @1# that it is not possible to define th
Lyapunov or energy function for such a system. As a res
one cannot use in the present case the methods of equ
rium statistical mechanics, which have been extensively u
to analyze the Hopfield model. We concentrate, therefore
the dynamics of the model, which is governed by the lo
alignment field. First, we look at the structure of the loca
stable fixed points~i.e., states that are stable to all single sp
flips! of the model. The counting of fixed points in th
Hopfield model produces the following picture@11#. The
fixed points, which are exponentially large inN, appear only
in two distinct regions of phase space: in a narrow ‘‘r
trieval’’ band where the fixed points are strongly correlat
with a memory state, and in a wide ‘‘spurious’’ band whic
is centered around states having no macroscopic ove
with the chosen memory state. The two bands are disj
from each other only below a certain critical value ofa
50.113. It should be noted that the retrieval band is
exactly centered around the memory state. It happens
some of the neurons undergo spin-glass–type freezing
random individual states under the influence of conflicti
synaptic inputs@1#.

When the self-couplingd is increased from zero to a pos
tive value, it results in the exponential growth of fixed poin
both in the retrieval and the spurious bands. These ba
become wider withd and finally merge together. For mode
ate values ofd, the retrieval band grows faster than the sp
rious band. It gives rise to the possibility of having an op
mal value of the self-coupling where the positive effects d
©2001 The American Physical Society12-1
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MANORANJAN P. SINGH PHYSICAL REVIEW E64 051912
to the growth of the retrieval band may take over the ne
tive effects due to the growth the spurious band so far as
retrieval performance of the network is concerned. On
other hand, the presence of negative self-coupling result
making the two bands narrower by destabilizing expon
tially many fixed points present in these bands. As a res
the two bands move farther apart in phase space. As is
case with the positive self-coupling, fixed points in the
trieval band are much more sensitive to the self-coupl
than those in the spurious band. The retrieval band gets c
pletely suppressed by a negative self-coupling of a v
small magnitude compared to what is required to comple
suppress the spurious band. This is not in agreement with
numerical simulation results of Ref.@5#, namely that it is
possible to suppress completely the spurious fixed points
a,0.05. Further, the magnitude of the self-coupling whi
is required to suppress the retrieval band has a strong de
dence ona. The higher the value ofa, the smaller is the
magnitude of the self-coupling required to completely su
press the retrieval band. Once again we are faced wi
situation in which the positive effects due to suppression
the spurious band are accompanied by the negative ef
that may arise due to suppression of the retrieval band. N
rally, the question arises whether there exists an opti
value of the negative self-coupling for the retrieval perfo
mance of the network. The question seems more relevan
smaller values ofa, where the retrieval band survives fo
comparatively higher magnitude of the negative se
coupling.

At this point, it should be mentioned that the comple
suppression of the retrieval band does notnecessarilystop
the function of the network as an associative memory@1,10#.
A fixed point in the retrieval band is initially destabilized a
the spin-glass freezing of the randomly aligned neuron
destroyed by a negative self-coupling of rather small mag
tude, thereby causing a hopping around. This would, ho
ever, not affect the overlap with the stored pattern, wh
will remain fixed and large, as it is determined by the rest
the neurons. As long asa is small, the distinction between
fixed point and a trajectory spanning a small phase sp
corresponding to neurons with weak local fields is not v
significant from an operational point of view. The netwo
would work effectively provided that the dynamics draws t
network to the neighborhood of a memory, even if a sm
fraction of neurons keep changing their states. If the tim
averaged overlap is high enough, the memory would
properly recalled. From this point of view, it seems natura
study the time evolution of the overlap.

The foregoing discussion brings out the need for a
namical theory. To this end, we generalize a dynam
theory due to Coolen and Sherrington@12,13#, which has
been used to study the dynamics of the Hopfield model w
an extensive number of stored patterns on finite time sca
We find that the time taken by the network to converge to
desired memory state reduces in the presence of a pos
self-coupling. It is also possible to enhance the basins
attraction of stored patterns by having a positive se
coupling of appropriate magnitude. The retrieval perf
mance is found to deteriorate in the presence of a nega
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self-coupling—the convergence time increases, the basi
attraction decreases. One may expect enhancement in
storage capacity due to the presence of a negative
coupling by looking at the structure of fixed points. How
ever, this does not happen. Once again, contrary to the
eral expectation, we find that it is possible to enhan
somewhat the storage capacity of the network by havin
positive self-coupling. The positive self-coupling is also be
eficial in different regions of the (T2a) phase diagram
@1,14#. We observe faster retrieval and enhancement in
basin of attraction in the mixed phase, too. Moreover,
trieval becomes possible in some regions of the spin-g
phase.

The remaining part of this paper is organized as follow
Section II contains a description of the model we consider
Sec. III, we present the results on the structure of fixed po
of the deterministic dynamics. We study the dynamics of
model on finite time scales in Sec. IV. Section V contain
summary of the main results of this study and a few concl
ing remarks.

II. MODEL

The network under investigation consists ofN two-state
model neurons~‘‘spins’’ ! s i , each of which may assume th
values11 or 21. A configuration or state of the network i
defined by giving specific values to all of itsN spins. The
off-diagonal elements of the synaptic interconnection ma
are given by the modified Hebb rule,

Ji j 5
1

N (
m51

p

j i
mj j

m , iÞ j , ~1!

where the $j i
m%, m51, . . . ,p are the stored patterns o

memories. Eachj i
m may take the values61 with equal prob-

ability. The number of patterns stored in the network isp,
and a5p/N is the memory-loading level of the network
Instead of taking the diagonal elements of the synaptic m
trix Jii 50, which is the case in the Hopfield model@15#, we
take them to be

Jii 5d, ; i . ~2!

The noise-free~zero temperature! dynamics of the network is
given by the sequential update,

s i~ t1dt !5sgn@hi~ t !#, ~3!

where the local field at the spins i is given by

hi~ t !5(
j

Ji j s j~ t !. ~4!

In order to compare this dynamics with that of the stand
Hopfield model, we rewrite the local fieldhi(t) as

hi~ t !5hi
0~ t !1ds i~ t !, ~5!
2-2
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HOPFIELD MODEL WITH SELF-COUPLING PHYSICAL REVIEW E64 051912
wherehi
0(t)5( j Þ iJi j s j (t) is the local field at theith spin in

the Hopfield model. It is possible to express the update
for the i th spin as

s i~ t1dt !5sgn@hi
0~ t !1ds i~ t !#. ~6!

Thus, a negative~positive! self-coupling in the synaptic ma
trix has the effect of introducing a positive~negative! thresh-
old in the dynamics of the Hopfield model. It is clear fro
Eq. ~6! that if udu@u^h0&u, the initial state will not flow to the
desired memory and the network will not act as an asso
tive memory. Therefore, it is important to ensure by cho
ing carefully the magnitude ofd that the dynamics of the
network is not dominated by the self-coupling. It can be se
below that the average value ofh0 at any time is given by the
overlap with the desired memory. Hence the magnitude
the self-coupling should be much smaller than the star
overlap with the memory state to be retrieved. We will no
discuss the effect of the self-coupling on the structure
fixed points.

III. STRUCTURE OF FIXED POINTS

Fixed points are the states that remain unchanged u
the single spin-flip dynamics given by Eq.~3!. Accordingly,
a statesW [(s1 , . . . ,sN) is a fixed point if it satisfies the
following condition:

s i5sgn@hi #, i 51, . . . ,N. ~7!

This can also be expressed as

his i.0, i 51, . . . ,N. ~8!

We follow closely the approach of Gardner@11# to calculate
the average number of fixed-point attractors^Nf p(N,a,d,g)&
at a Hamming distanceNg from a stored pattern. We con
sider a statesW which is at a Hamming distanceNg from the
nth stored patternjW n. According to Eq.~8!, the state will be
a fixed point if the quantity

Ri
n5s i(

j
Ji j s j.0, i 51, . . . ,N, ~9!

so that the average number of fixed points at a Hamm
distanceNg from thenth stored pattern is given by

^Nf p~N,a,d,g!&5E
0

`

)
i

dl iTr$s i %K)i
d~l i2Ri

n!L .

~10!

Separation of the term coming from thenth pattern and the
interference term coming from other patterns gives

Ri
n5122g1

1

N (
j Þ i

(
mÞn

j i
mj j

ms is j1d ~11!

for N(12g) values ofi for which j i
n5s i , and
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n52g211

1

N (
j Þ i

(
mÞn

j i
mj j

ms is j1d ~12!

otherwise. Using the integral representation for thed func-
tions in Eq.~10! and averaging over the patterns~see Ref.
@16# for technical details of such a calculations!, we get in
the thermodynamic limit

^Nf p~N,a,d,g!&'eNF(a,d,g). ~13!

F(a,d,g) is given in the terms of the saddle-point param
etersa andb as

F~a,d,g!5aFb2
1

2
1

~12b!2

2a
1

1

2
ln aG1~12g!ln f~ t !

1g ln f~u!2g ln g2~12g!ln~12g!, ~14!

where

t5
2g211ab2d

Aaa
, ~15!

u5
122g1ab2d

Aaa
, ~16!

and

f~x!5
1

A2p
E

x

`

dy exp~2y2/2!. ~17!

The saddle-point parametersa and b satisfy the following
equations:

aF ~12b!2

a
21G1~12g!t

f8~ t !

f~ t !
1gu

f8~u!

f~u!
50, ~18!

aF12
~12b!

a G1~12g!Aa

a

f8~ t !

f~ t !
1gAa

a

f8~u!

f~u!
50.

~19!

We have solved Eqs.~18! and~19! numerically fora and
b for different values ofa andd to get correspondingF(g).
In Fig. 1, we have plottedF(g) for a50.05. We note here
that according to Eq.~13!, fixed points exist only in regions
of the phase space whereF(g)>0 as N→`. As is well
known, ford50 we have fixed points in two distinct region
of phase space—in a narrow ‘‘retrieval’’ band where t
fixed points are strongly correlated with the chosen mem
state (g'0), and in a wide ‘‘spurious’’ band which is cen
tered around states having no macroscopic overlap with
memory state (g50.5). These two bands are well separat
from each other. Ford50.02, we have the same structure
fixed points. However, additional fixed points have appea
in both bands, making both of them broader. The retrie
band grows faster than the spurious band. For instance
d50.02, the peak value ofF in the retrieval band is three to
four orders of magnitude larger than that atd50. On the
other hand, the peak value ofF in the spurious band atd
2-3
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MANORANJAN P. SINGH PHYSICAL REVIEW E64 051912
50.02 is only 1.3 times larger than that atd50. When the
self-coupling strength is reduced to a negative valued5
20.02, the retrieval band has become completely s
pressed. The spurious band has still exponentially m
fixed points in spite of a small fraction of fixed points b
coming destabilized. When the strength of the self-coupl
term is further reduced tod520.06, both of these band
become completely suppressed. The higher sensitivity of
fixed points in the retrieval band is due to the fraction
spins, which is not aligned to the chosen memory state
hence has very low stability.

In Fig. 2, we present the results fora50.113 where in the
standard Hopfield model (d50) we have the two band
nearly overlapping each other. As the self-coupling stren
d is reduced tod520.002, both of these bands becom
narrower and more separated from each other. The retri
band becomes completely suppressed atd520.003 whereas
the spurious band becomes completely suppressedd

FIG. 1. F(g) for various values of the self-couplingd. a
50.05. Full curve,d50; dotted curve,d50.02, dashed curve,d
520.02; full curve at the bottom,d520.06.

FIG. 2. Same as Fig. 1.a50.113. Full curve,d50; dotted
curve,d520.002; dashed curve,d520.003; full curve at the bot-
tom, d520.09.
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520.09. It is worth noticing here that the magnitude of t
self-couplingudcru which is required to suppress the retriev
band has a strong dependence on the memory-loading
a. There is almost an order of magnitude variation inudcru as
we go froma50.05 toa50.113. The origin of the highe
sensitivity of the retrieval states at higher values ofa lies in
the fraction of spins which is not aligned to the chos
memory state. The higher the value ofa, the higher is the
probability of finding a spin with lower stability. However
there is little variation in the magnitude of the self-couplin
udcsu needed to destabilize the spurious band as we go f
a50.5 toa50.113.

It is intriguing to investigate the effect of growth or sup
pression of fixed points on the retrieval properties of t
network. In particular, it is interesting to study the behav
of the basin of attraction of stored patterns and the conv
gence time~time taken by an initial state to reach the desir
state!. This would be possible only in the framework of
dynamical theory, which will be discussed in the ne
section.

IV. DYNAMICS

To study the dynamics of the model, we generalize a
namical theory due to Coolen and Sherrington@12,13#. The
theory approximates reasonably well the dynamics of
fully connected Hopfield model near saturation on finite tim
scales. Here, we consider the stochastic dynamics of the
work to account for the fast synaptic noise, which introduc
undeterminism in the dynamics, e.g., given by Eq.~3!. One
is then compelled to carry out averages on ensemble
networks. It is convenient to start from a Glauber-type M
kov chain description@1#, where at each time step a ran
domly drawn spin is updated@and where the duration of eac
updatedt is taken as 1/N so that onO(N0) time scales all
spins have been updated once on average# such as

pt1dt~sW !5pt~sW !1dt (
k51

N

@pt~FksW !wk~FksW !

2pt~sW !wk~sW !#. ~20!

Here,pt(sW ) is the probability of finding the system at timet

in statesW [(s1 , . . . ,sN). Fk is a single spin-flip operator,

FkF~sW ![F~s1 , . . . ,2sk , . . . ,sN!, ~21!

and the transition rateswk(sW ) have the usual form,

wk~sW ![
1

2
@12sk tanh„bhk~sW !…#. ~22!

The parameterb (5T21, the inverse of temperature! con-
trols the degree of stochasticity. Forb50, the dynamics is
completely random whereas forb5` we recover the deter
2-4
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HOPFIELD MODEL WITH SELF-COUPLING PHYSICAL REVIEW E64 051912
ministic update rule of Eq.~3!. For N→`, dt→0 and hence
Eq. ~20! results in the master equation:

d

dt
pt~sW !5 (

k51

N

@pt~FksW !wk~FksW !2pt~sW !wk~sW !#.

~23!

We assume that the correlationsmm(sW )[(1/N)(kjk
msk

between system state and stored patterns are of order
for m51. The remainingp21 correlations are assumed
be of order 1/AN ~the condensed ansatz!. Their cumulative
impact on the system’s dynamics is given by the order
rameterr (sW ),

m~sW ![
1

N (
k51

N

jk
1sk ,r ~s![

1

a (
m.1

p F 1

N (
k51

N

jk
mskG2

.

~24!
te

05191
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Local fields can now be expressed as

hi~sW !5j i
1@m~sW !1zi~sW !#2

1

N
s i , ~25!

zi~sW ![j i
1 (

m.1

p

j i
m 1

N (
kÞ i

N

jk
msk1dj i

1s i . ~26!

It is useful to define a distribution which gives the probab
ity density in terms of the macroscopic order paramet
(m,r ):

Pt~m,r ![(
sW

pt~sW !d„m2m~sW !…d„r 2r ~sW !…. ~27!

Using Eq.~23!, we can write the time derivative of the mac
roscopic distribution in the thermodynamic limit as
d

dt
Pt~m,r !5

]

]m H Pt~m,r !Fm2E dzDm,r ;t@z#tanh@bm1bz#G J 12
]

]r H Pt~m,r !F r 212
1

aE dzDm,r ;t@z#z tanh@bm1bz#

1
d

aE dzDm,r ;t8 @z#tanh@bm1bz#G J 1
1

N
Pt~m,r !OF1,E dzDm,r ;t@z#z,E dzDm,r ;t@z#z2,d,d2G , ~28!

where the intrinsic noise distributionsDm,r ;t@z# andDm,r ;t8 @z# are given by

Dm,r ;t@z#[

(
sW

pt~sW !d„m2m~sW !…d„r 2r ~sW !…~1/N!(
i

d„z2zi~sW !…

(
sW

pt~sW !d„m2m~sW !…d„r 2r ~sW !…

, ~29!

Dm,r ;t8 @z#[

(
sW

pt~sW !d„m2m~sW !…d„r 2r ~sW !…~1/N!(
i

s ij i
1d„z2zi~sW !…

(
sW

pt~sW !d„m2m~sW !…d„r 2r ~sW !…

. ~30!
d
tri-
The condensed ansatz allows us to neglect the last term
the right-hand side of Eq.~28! as the variance ofDm,r ;t@z#
will remain finite for N→`. Thus Eq.~28! takes the Liou-
ville form on finite time scales in the limitN→`. It there-
fore leads to deterministic evolution of the order parame
(m,r ):

Pt~m,r !5d„m2m* ~ t !…d„r 2r * ~ t !…, N→`, ~31!

where the deterministic trajectory„m* (t),r * (t)… is given by
the solution of the coupled flow equations:

d

dt
m5E dzDm,r ;t@z#tanh@bm1bz#2m, ~32!
on

r

1

2

d

dt
r 5

1

aE dzDm,r ;t@z#z tanh@bm1bz#

2
d

aE dzDm,r ;t8 @z#tanh@bm1bz#112r .

~33!

Although Eqs.~32! and ~33! are exact within the condense
ansatz, the trouble with them is that they contain the dis
butions given by Eqs.~29! and ~30!, which depend on the
microscopic distributionpt(sW ), which in turn depends on the
initial microscopic distributionp0(sW ). In order to close these
2-5
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equations, Coolen and Sherington@12# made two important
assumptions:~i! the flow equations, and therefore the dist
butions ~29! and ~30!, are self-averaging in the thermody
namic limit with respect to the microscopic realization of t
stored patterns, and~ii ! in calculating these distributions on
can assume equipartitioning of probability within the mac
05191
-

scopic (m,r ) subshells of the statistical ensemble. The fi
assumption has been supported by the numerical simulat
@13#. As a result, the explicit time dependence and the
pendence on microscopic initial conditions in the flow equ
tions ~32! and ~33! are removed and the intrinsic noise di
tributions now become
Dm,r ;t@z#→Dm,r@z#[K (
sW

d„m2m~sW !…d„r 2r ~sW !…~1/N!(
i

d„z2zi~sW !…

(
sW

d„m2m~sW !…d„r 2r ~sW !…
L

$jW%

, ~34!

Dm,r ;t8 @z#→D8m,r@z#[K (
sW

d„m2m~sW !…d„r 2r ~sW !…~1/N!(
i

s ij i
1d„z2zi~sW !…

(
sW

d„m2m~sW !…d„r 2r ~sW !…
L

$jW%

. ~35!
ry
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The distributionsDm,r@z# andDm,r8 @z# are calculated by the
replica method~see Ref.@13# for details!. In the replica sym-
metric ~RS! approximation, the results are

Dm,r
RS @z#5

e2(D1d1z)2/2ar

2A2par

3H 12E Dy tanhFlyA D

arr

1~D1d1z!
l2

arr
1mG J 1

e2(D1d2z)2/2ar

2A2par

3H 12E Dy tanhFlyA D

arr

1~D1d2z!
l2

arr
2mG J , ~36!

Dm,r8RS@z#52
e2(D1d1z)2/2ar

2A2par

3H 12E Dy tanhFlyA D

arr

1~D1d1z!
l2

arr
1mG J 1

e2(D1d2z)2/2ar

2A2par

3H 12E Dy tanhFlyA D

arr

1~D1d2z!
l2

arr
2mG J , ~37!
whereDy is the Gaussian measure,Dy[(dy/A2p)e2y2/2,
D[arr 2l2/r, and the parameters$q,l,r,m% are solutions
of the following saddle-point equations:

r 5
12r~12q!2

@12r~12q!#2
, ~38!

l5
rAaq

12r~12q!
, ~39!

m5E Dy tanh~ly1m!, ~40!

q5E Dy tanh2~ly1m!. ~41!

Stability of the replica symmetric solution requires

a2r2~a1D!2E Dy

cosh4~ly1m!
>0. ~42!

We numerically solve Eqs.~32! and ~33! for various val-
ues of the memory loading levela, the self-couplingd, the
temperatureb21, and the initial conditionsm0 for the over-
lap m. We fix the initial condition for the order parameterr at
r 051 for all the calculations. In Fig. 3, we plot the trajecto
m(t) for m050.22, a50.05, and various values of the sel
coupling d. It can be seen that retrieval is possible ford
50 with final overlapmf'1. The RS solution becomes un
stable only after the retrieval has taken place, i.e., neam
'1 andr'1. Asd is increased to a moderate positive valu
the retrieval becomes faster. Ifd is further increased, re
trieval, as expected, becomes slower. Moreover, retrie
quality deteriorates and the RS solution becomes unst
2-6
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before the retrieval. Whend is negative, forudu<0.02 re-
trieval is possible withmf'1. The RS solution become
unstable only after retrieval has been achieved. However
retrieval becomes slower. As the magnitude of the nega
self-coupling is increased to 0.04, the RS solution becom
unstable before the retrieval. Furthermore, the retrieval
comes very slow. Ford520.08, the retrieval is not possible

Next, we look at the effect of the self-coupling on th
basin of attraction of a stored pattern. In the standard mo
(d50), it is possible to retrieve the memory only when t
initial overlap with the stored patternm0>0.22 for a
50.05. We find that it is possible to retrieve the memo
with slightly lower values of the initial overlapm0>0.21 by
having a positive self-couplingd50.04. Similarly for a
50.1 we observe improvement in the basin of attract
~Fig. 4!. The minimum initial overlapm050.43 is needed in
order to achieve the retrieval atd50. We find that with a
positive self-coupling it can be accomplished with lower v
ues of them0, e.g., 0.35 atd50.2. The enhancement in th
basin of attraction is much more prominent compared to
in a50.05. However, the retrieval quality becomes poor
we go for the lower values of the initial overlap and high
values of the self-coupling. We find reduction in the basin
attraction with the negative self-coupling.

Figure 5 shows the effect of self-coupling on the stora
capacity of the network. We find enhancement of the stor
capacity by having a positive self-coupling. It is possible
retrieve memory even fora50.15 with d50.15, which is
not possible otherwise.

The Hopfield model has a rich (T2a) phase diagram

FIG. 3. Evolution of the overlapm of the network statesW with

jW1, the pattern under retrieval, for various values of the s
coupling d. a50.05, T50, and m050.22. Time is in units of
iterations/spin. Full curve, solutions of the flow Eqs.~32! and ~33!
are stable against replica symmetry breaking~RSB!; dotted curve,
the solutions are unstable against RSB.~a! d50. ~b! d50.04. ~c!
d50.25. ~d! d520.02. ~e! d520.04. ~f! d520.08.
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@1,14#. The spurious attractors affect the dynamics of t
network differently in different regions of the phase diagra
We therefore solve the flow equations for finite temperatu
to find out effect of the self-coupling in different regions
the phase diagram. First we look at the situation in wh
a50.05 andT50.5. This point falls in a region that repre
sents a mixed phase of the spin glass and the retrieval st
However, the retrieval states are not the global minima of
free energy. This results in the reduction of the basin
attraction of the stored patterns. The initial overlapm0
should not be less than 0.44 in order to retrieve the mem
This should be compared withm0>0.22 in the zero-
temperature case. Once again we find faster retrieval
enhancement in the basin of attraction of the stored mem

-

FIG. 4. Effect of self-coupling on the basin of attraction.a
50.1 andT50. Time is in units of iterations/spin. Full and dotte
curves, same as Fig. 3.~a! m050.4, d50.04. ~b! m050.38, d
50.12. ~c! m050.37, d50.15. ~d! m050.36, d50.15. ~e! m0

50.36, d50.2. ~f! m050.35, d50.2.

FIG. 5. Effect of self-coupling on the storage capacity of t
network.a50.15 andT50. Time is in units of iterations/spin. Ful
and dotted curves, same as Fig. 3.~a! m050.9, d50. ~b! m0

50.6 and 0.7,d50.15.
2-7



t
ve
en

f
e

th
f
t
e

a
ta
ly

in
at

at
of

f
n

ou
ie
n

al

f
o
o
b

xed
ny
um-
nt in
. In
he
ba-
eval
g of
val
t in
age
lso
ions

in
e of
e

up-
m-

sup-
in
the
due
t in
be
ic

or-
nts.
cal
n

on
nts
ur

for
cal

in

s,

in

es

MANORANJAN P. SINGH PHYSICAL REVIEW E64 051912
in the presence of a positive self-coupling~Fig. 6!. Next we
consider the case ofa50.09 andT50.4, which falls in the
spin-glass phase~Fig. 7!. In the standard model, it is no
possible to retrieve the memory in such a situation. Howe
by havingd50.15 it is possible to retrieve the memory ev
in this case.

V. CONCLUSION

To summarize, we have analyzed the performance o
Hopfield model as an associative memory in the presenc
a self-coupling term in the synaptic matrix by~i! counting
the fixed points of the zero-temperature dynamics in
phase space and~ii ! by applying a dynamical theory o
Coolen and Sherrington, which has been used to study
dynamics of the Hopfield model on finite time scales. W
have investigated the range ofa from 0.01 to 0.15, which is
the region of interest so far as the retrieval properties
concerned. We find that the spurious attractors are des
lized by a negative self-coupling, which depends very mild
on a. The magnitude of the self-coupling varies fromudu
50.06 in the case ofa50.05 to udu50.09 for that ina
50.113. Contrary to this, the magnitude of the self-coupl
which causes suppression of the retrieval states has a r
strong dependence ona. A negative self-coupling of very
small magnitude is enough to destabilize the retrieval st
at higher values ofa, compared to those at lower values
a. For example, the retrieval states fora50.113 become
suppressed atd520.003, whereas those fora50.05 be-
come suppressed atd520.02, a value that is an order o
magnitude higher. In both cases, however, the suppressio
retrieval states occurs much earlier than that of spuri
states. As discussed above, the suppression of the retr
states occurs because of the fraction of spins, which is
aligned to the stored pattern and hence has a very low v
of local alignment fields.

There have been speculations@5# that the suppression o
spurious fixed-point attractors by a negative self-coupling
appropriate magnitude will result in better performance
the network as an associative memory. The main reason

FIG. 6. Effect of self-coupling on the retrieval performance
the mixed phase region of the (T2a) phase diagram.a50.05 and
T50.5. Time is in units of iterations/spin. Full and dotted curv
same as Fig. 3.~a! m050.4, d50. ~b! m050.4, d50.08. ~c! m0

50.44, d50 ~lower curve!, andd50.12 ~upper curve!.
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hind such an expectation is the robustness of retrieval fi
points to the self-coupling. However, we did not find a
direct correlation between the suppression of the large n
ber of spurious metastable attractors and the improveme
the performance of the network as an associative memory
fact, we find deterioration in the retrieval performance of t
network in the presence of a negative self-coupling—the
sin of attraction of stored memory decreases and the retri
time increases. On the other hand, a positive self-couplin
appropriate magnitude has a positive effect on the retrie
performance of the network. We find some enhancemen
the basin of attraction of the stored memory and the stor
capacity of the network. The retrieval becomes faster. It a
becomes possible to retrieve memory even in some reg
of the spin-glass phase, which is not possible otherwise.

To what extent is the structure of fixed points relevant
understanding the behavior of the network in the presenc
self-coupling? We can think of two possibilities. First, in th
case of negative self-coupling, the positive effects of s
pression of the spurious fixed-point attractors do not co
pensate for the negative effects that may arise due to
pression of the retrieval fixed-point attractors. Similarly,
the case of moderate positive self-coupling, growth of
retrieval band compensates well for the negative effects
to growth of the spurious band and leads to improvemen
the retrieval performance of the network. Second, it may
possible that the effect of self-coupling is purely dynam
and the improvement or deterioration in the retrieval perf
mance cannot be attributed to the structure of fixed poi
Understanding this would be quite interesting. Numeri
simulation results of Ref.@6# suggest that improvement i
the retrieval performance of the network may also depend
the choice of the learning rule for the off-diagonal eleme
of the synaptic matrix. This issue will be addressed in o
future publication.
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FIG. 7. Effect of self-coupling on the retrieval performance
the spin-glass region of the (T2a) phase diagram.a50.09 and
T50.4. Time is in units of iterations/spin. Full and dotted curve
same as Fig. 3.~a! m050.9, d50. ~b! m050.7, d50.15. ~c! m0

50.6, d50.25.
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